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Role of internal and continuum modes in modulational instability of quadratic solitons
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The role of internal and continuum modes in the modulational instability of spatial quadratic solitons is
examined by asymptotic and numerical analyses. It is shown that these modes generate novel spatially sym-
metric and asymmetric modulation instability branches, which underline soliton dynamics throughout a wide
region of the wave-vector mismatdf61063-651X99)07912-X]

PACS numbes): 42.65.Tg

[. INTRODUCTION GVD-induced MI of the spatial solitons is closely linked
with the concept of spatio-temporal solitons, which have
The evolution of optical solitary waves under the actionbeen recently observed in an experiment with the bulk qua-
of a perturbation of different physical origin is one of the dratically nonlinear mediurf83]. It has been shown theoreti-
active areas of theoretical nonlinear optics. This problem cagally that the fully developed MI of the spatial solitons re-
be tackled using soliton eigenmodes, which are solutions o$ults in the generation of a train of the spatio-temporal
the associated linear eigenvalue problem. The eigenmoddéiiasisolitons[19,20,27. Growing sidebands in the fre-
can be either localized or delocalized with respect to thejuency spectrum of the spatio-temporal pulse propagating in
soliton itself. The former ones are the modes of the discretéhe quadratic medium have also have been obseseiFig.
spectrum and the latter ones are the modes of the continuurd. in [33]), indicating the presence of GVD-induced MI.
Stable discrete eigenmodes,internal modeg1], being ex- However, bulk media typically have relatively low GVD and
cited can propagate over very long distanf@s Their exci-  therefore large and controllable GVD coefficients in Bragg
tations can cause, e.g., periodic oscillations of the solitofstructures probably are more promising for the practical uti-
width [3=5] or position[6,7]. Resonances of the two internal lization of spatio-temporal solitons for all optical processing
modes with zero propagation constants always imply a soliof information; see, e.g[34] and references therein.
ton bifurcation which can lead either to stationary instability ~MI of the solitary waves is often routinely considered as a
[3’8_1q or to the appearance of another solitonic brancrpontinuation of the neutrally stable modes of the soliton
[10,11]. The resonances of two pairs of the internal modes$pectrum at zero modulational frequentl, i.e., soliton
with nonzero(equal in absolute values and opposite in sjigns €igenmodes with zero propagation constants related to sys-
propagation constants lead to a Hamiltonian-Hopf instability fem symmetries, into the regidd # 0. However, generally,
i.e., instability generated by a pair of complex-conjugatedot only the neutral but also internal and continuum eigen-
propagation constant§9,12,13. Internal and continuum modes can potentially produce MI branches. An analysis of
modes also cause certain nontrivial effects in the soliton inthis problem was largely avoided in the publications on Ml
teraction; see, e.g[11,14. As one can see from these ex- of the spatial solitons supported by the quadragi€)) non-
amples both internal and continuum modes play a very imlinearity [22-28 and has also remained a practically un-
portant role practically in all aspects of the soliton dynamicstouched issue in the more general solitonic context. It is in
Considering experimental schemes for an observation gsharp contrast with the, already-described, detailed under-
the spatial self-trapping and soliton generation, high-inputstanding of the influence of the internal modes on the “in-
power levels are often required in materials with small nonternal” soliton dynamics. Here | will demonstrate the pres-
linear susceptibilities and/or significant absorbtion. E.g., genénce of the novel Ml branches in the quadratic soliton
eration of Kerr and quadratic solitons in planar waveguidesspectrum, which originate from either internal or continuum
requires powers of the order of 1 k5,16 Such powers modes and influence soliton dynamics throughout a wide
can be practically easily achieved using pulses; therefore thehysically realistic range of parameters.
effect of the group velocity dispersiqiGVD) on the propa-
gation of the spatial solitons can become considerable, caus-
ing their break up into spatio-temporal clusters via develop- Il. MODEL EQUATIONS

ment of the so-callechodulational instabilitMI); see[17— ) )
29] and [30-33, respectively, for theoretical and The evolution of the slowly varying wave envelopes of

experimental results on the MI of solitons and solitonlike the first 1) and second&,) harmonics propagating in the

- . . . 2 . g
beams and pulses. The instabilities introduced in the precedliffractive and dlspers_lve(( ) medium under the conditions
ing paragraph are usually calléaternal or longitudinal in-  ©f type-l phase matching can be described by the following

stabilitiesand should be distinguished from MI which is the Set of the dimensionless equatidi22—26:
subject of the present investigation.

1
i9,E,+ = 0°E + y10°E,; + EXE,=0,
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Herex is the transverse coordinate measured in units of the A1 B Zax+2’<+:8
characteristic beam width. Definitions of the other param-
eters and independent variables depend from a particular v, 0O
choice of the experimental scheme, where Hds.can be 5 ( ! ) (6)
applicable. First, Egs. (1) describe one-transverse- 0 7

dimensional noncritically phase-matched experimental

schemes, where temporal walkoff can be neglected or connd \ is an eigenvalue or, in other words, a propagation

pensated by some special techniques; see,[83)35. Then  constant of a soliton eigenmode.

zis the longitudinal coordinate measured in units of a suit- Let suppose thak+y,Q°=¢=0 and 2+ B+ y,0°

able diffraction length 4, 7 is the dimensionless retarded =£,=0. Then, generallyA?e (—%,—\}) is a continuous

time, andg is the wave-vector mismatch measured in unitspart of the spectrum with unbounded eigenfunctions where

|5, which is in the case of quasiphase matching has to b&=min(¢;,&,). Eigenvalues which do not belong to the con-

corrected by the grating constdB6]. | v, /y,| is the relative tinuum constitute the discrete part of the spectrum and have

strength of the GVDs. If 3;=4y,=1, then Egs(1) also bounded eigenfunctions. Stable eigenmodes with eigenval-

describe propagation in a bulk medium withbeing the — ues obeying-A;<\?<0 are the internal modes. Any other

second transverse coordinate. Second, considering the deode of the discrete spectrum, i.e., any eigenmode wjth

generate three-wave mixing in a doubly periodic Bragg gratcomplex or positive, renders the soliton unstable& &0

ing embedded in the quadratic medium He and Drummoné@nd/oré,<0, the gap is closed,y=0. Phase, translational,

[37] and Conti with co-worker$38] have showed that for and Galilean symmetries and infinitesimal variations«of

the frequencies close to the center of the forbidden gapllow us to identify zero-eigenvalu@r neutral eigenmodes

(rjnodedl equa;tions gr?VﬁrPing r;lropa_gat_ign dynﬁrgigz)ca#] be reyf the adjoint operators”:lz0 andZ,L,. These eigenmodes
uced to a form which formally coincides wit . The _ T

only difference is that temporal and longitudinal coordinates. W"’ (A1,280) T, Wy =X(AL.2A)T, U =0(A1,A7)",

should be interchanged. The reason for this is that in th&"9

Bragg gratings the dominating dispersion originates from theCoWs=0, LoWy=—Uy, L1U,=—Wg4, andL;u,=0.

delayed spatial, not temporal, response of the medium. More Full information about the spectra of EVE® and(4) can

details on renormalization of the dependent and independeR€ obtained only numerically, but for small absolute values

variables and parameters can be foundlli6,23—-26,37,38  of A application of an asymptotic approach leads to some
analytical predictions. Similarly to the previously studied

cases branches of the discrete spectrum produced by the spa-
tially symmetricvi/d,, GK and by the spatially asymmetric
vectorsvil\,, JX can be considered independently. A symmet-
Equations(1) with 9.=0 have a family of the ground- ric branch being unstable causes clustering of the solitons

state solitary solution€(x,z)=A,(X)e™? (m=1,2), if into the spatio-temporal patchéseck MI) and an unstable
x>max(0- B/2). These solitons can be internally unstableasymmetric branch causes soliton bendisigake M).

nd ux—aX(Al,Az)T and they obey foIIowmg identities:

IIl. ASYMPTOTIC STABILITY ANALYSIS: THE ROLE
OF INTERNAL MODES

for B<0 providing thatd, Q<0 [8], where szdx(Af To study discrete spectrum arising due to branching of the
+2A2) is the soliton energy. symmetric and asymmetric modes it is naturally to consider
To study MI of the solitons we seek solutions of E¢B. EVP_(4) and (3), respectively. The internal modes are sym-
in the form metric oneg 3] and therefore we focus on the EV®) be-
low. We seek its eigenmodes in the form
Em={An(X) +[Un(X,2) +iWn(x,2)]JcosQt}e™<? (2) oo
vi=vi¢+j21 Wi, @)

where()=0 is the modulation frequency,,,, W,, are small

perturbations, anth=1,2. Separating the real and imaginary 2 5
parts of the linearized problem and settitig,~ u(x)e*?, where|w;|~|\|* and|\|?~e<1. The key difference W'th

2
W.,~w,,(x)e", we obtain two adjoint eigenvalue problems previous analysef22-24 is that we assume hef@?~ e?
(EVP) not ~ e. It allows us to get a balanced equation X3t WhICh

takes into account the branching of the both neutral and in-
. L o . ternal modes.
—LoLu=(N2+Q%yLi+Q%Loy+ Q%) u,  (3) Substituting Eq(7) into Eq. (4) one can obtain the fol-
lowing expression fow:
— L1 Low=(N2+ QYL+ Q%L1 y+Q*Y)wW, (4 S - - ..
LW = yo YY) @ W= W+ N22g i, — N2y L2 M — Q25w+ O(3).
tS)
defining the mode structure of the soliton induced linear
waveguide. Herer=(uy,u,)T, w=(w;,w,)7, Using the condition
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((N2+ Q2L y+ 0%y Lo+ Q%)w|u,) =0, 9) 020
which holds for any solution of EVR4), one can get an
equation forn. Brackets(- - -|- - -) define an inner product 015} .
in L,. Equation(9) has asymptotic character and has to be
satisfied in each order @f The first-order condition requires
\29,Q~ €2, implying that the internal instability threshold
d,Q=0 should be close enough. The second-order condition

Re) Imh

010} / 1

gives a quadratic equation far: 0051
1 000k o
2/ 0.7 e _\ 2 2
QYW 4|w )=\ (EaKQH\ M). (10) 0.00 0.05 0.10 o.és 020 025 030

aqe e . ) FIG. 1. Bifurcation diagram showing the collision of two gap

Here M=(L; "u,Ju,) is the soliton “mass,” which was modes and the onset of the Hamiltonian-Hopf neck-1 instability:
proved to be positives]. B=-1.8,k=1, y;,=—0.5.

If the longitudinal instability threshold is far, thef Q

~ €% and one can assume tHa{?~ 2~ e. In this situation

the leading order fok? is This is because af)= (). the square root in Eq12) be-

comes zero, indicating collision of the two eigenvalmés

and A2, corresponding to the two pairs of the internal
, (1) modes. This collision gives onset to the Hamiltonian-Hopf
9.Q instability with complex conjugated eigenvalues. 4£Q

<0, then a similar bifurcation happens at the s with
which coincides with the previously derived expressions PP die

[22.24—26,28 If point ,Q=0 is close, then Eq11) has to a soliton which was already internally unstable Q).
be used in its full form. This results in

2_ 202< :)’VT/¢|VTI¢>

B. Diffraction and anomalous GVD-induced MI: y; »>0

xi=—( - ;aKQt \/ %(0KQ)2+4MQZ(§/VT/¢|VT/¢)). It follows from Egs.(11) and(12), that if 9,Q>0, then
(12) only the neutral modG;/¢ gives onset to the neck Ml and the
eigenvalue\? corresponding to a pair of the internal modes
At 0=0, Egs.(12) give the doubly degenerate zero eigen-rémains within the gap. The situation is reversed 4pQ
value corresponding to the neutral modg and the eigen- <0 i-e., the e.igen'valuei'correspzonding tav, shifts in-
values *+\—d,Q/(2M) corresponding to the internal Side the gap with) increasing and.~ produces a branch of
modes. It is clear that the roa corresponds to the spectral the neck MI. Snake MI generated by the translational mode

branch produced by the neutral modes and that thexdot [S€€ EA(13)] does not produce MI branches in this case.

corresponds to the branch produced by the staBlg(
>0), i.e., internal, or unstable?)(Q<0) modes which have IV. NUMERICAL STABILITY ANALYSIS @ THE

nonzero eigenvalues. ROLE OF CONTINUUM MODES

There are no spatially asymmetric internal modes and  tpe \j spectrum in the region of large and, in particu-
therefore previously obtained analy.tlcal results conceming,, the study of the possible splitting of MI branches from
snake MI produced by the translational mod2-24,28  yhe continuum can be most straightforwardly done using nu-
remain correct throughout an entire soliton existence regiofnerical methods. To address these problems, the EAP

In our notations the corresponding expressionNbiis has been solved numerically using second-order finite differ-
L ences. A direct simulation of Eq$l) has also been per-
Uy|U formed to compare with the results of the linear approach.
A2=292w. (13) P PP

A. Normal GVD-induced MI: y; <0

_ o . . Let us note from the very beginning that for different
_Equation(13) indicates that snake Ml is always present inyajues of3 numerical results reveal the presence of as many
this case. Neck MI originating in the neighborhood @f a5 three branches of neck-type and two branches of snake-
=0 is clearly impossible when,Q~¢°. However, if3,Q  type MI. We will gradually introduce all five branches, start-

~ €, then the low-frequency neck MI becomes possible foling our consideration from the parameter region wher@

A. Normal GVD-induced MI: y; <0

either sign ofd,Q; see Eq(12). ~ € and asymptotic expressidf2) can be applied. First we
If 4,Q>0, then the neck MI starts to grow from have numerically verified the appearance of the Hamiltonian-
(9.0)2 Hopf neck instability forQ>Q.. The corresponding bifur-
g I S SO (14) cation diagram is shown in Fig. 1. The Ml branch originating

1M (YW Wy)| from this bifurcation will be below called neck-I MI.
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FIG. 2. MI growth rates vs() for k=1, B=—1.8, y;,=
—0.5. The thin solid line corresponds to the neck-1 Ml with com- £ 4. Maximally unstable frequenci€k, ., [40] vs 8. Param-

plex eigenvalues, the bold solid line to the neck-Il Ml with real giars and notation the same as in Fig. 3.
eigenvalue, the dashed line to the snake-1 Ml with real eigenvalues,
and the dash-dotted line to the snake-Il Ml with complex eigenval- o
pearance of neck-lI Ml, after the splitting into the two bands,
numerical results unambiguously reveal that now this branch
. , splits directly from the continuum. The first band of snake
For nqrma! GVD t.he gap in the cont.muous spectrun‘; nar-Mpl snake-lyis linked to the translational modsee Eq.
r_owg V\/"th |r12cria3|r;g of Svlv.thandf Itth clpses at gg (13)], and the second band, snake-Il, bifurcates from the con-
=min(x/| ya|,(2rc+ B)/|7]). With a further increase o tinuum having complex conjugated eigenvalues. These two
the growth rate of the neck-l Ml approaches its maximum,, o 1< are also shown in Fig. 2
then decays, and finally disappears inside the continuum at Close to the internal stébil'ity threshold,Q=0, the
Someﬂ>99; see solid line in Fig. 2. Slightly before this maximal growth rate$40] of the secondary MI branches,
point but after the cI_osure of the gap another branch of th(?1eck—ll and snake-lIl, occur at the frequencies which are ap-
d|s|_(;re;ce sptehctrum tW'th pur_ﬂ}y re?]l tilgenvall(lulel;s, ne(r:]k-lrl] MI, roximately twice the maximally unstable frequencies of the
.Spl':.s r;)rln ke ﬁ?n Hnuum. 0?9 _ednec -d rarll/(lzl bs %Wrﬁrimary instabilities, neck-I and snake-I, linked to the neutral
In Fig. 2 looks like It consists of two independent ands, and internal modes; see Fig. 2. This indicates the importance
numerical results indicate that at these parameter values it |5 e second temporal harmonic in the development of MI
a single brapqh. Howevgr, v_v|t,6 increasing, approximately in the regiond, Q~ € where the second harmonic of the soli-
at ﬁ:h_l' I mdegd _sphts llnto BN(.) |ndeper|1dent bfnCh?l_Ston itself is dominant over or comparable with the fundamen-
}N't ft € assomste de'gﬁg\/a u?lsdelngkclcl)lml\ﬁlex rglutrr? ir's.h r1‘31I field. Increasing3 leads to the suppression of the second
fOW' requeEcydgnh Wi he caile neck-l M _ﬁ:‘ € high- Earmonic field and therefore the neck-ll and snake-II insta-
Lequency an mferltskt Iﬁ r'lﬂalmehnec ) '.h ne scenario Oyjjities quickly decay and finally disappear. Figure 3 and 4
El'he "?‘ppeaffncﬁ 0 ne(; ) él—oc danges W't_ |_r(;crer?sﬁlg illustrate, respectively, how the maximal growth rates and
ne Internal soliton modes &1=0 disappear insl .et e con- maximally unstable modulation frequenéy,,., of all five
tinuum for >0 [3], and the neck-Ill branch splits directly MI branches depend of. Thus one can see that snake-I Ml
from the edge of the continuum when the eigenvalue assOClominates the soliton dynamics f@>0.5 and that forg

ated withw,, approaches this ed89]. Considering the ap- <0.5 the dominating instabilities are neck-1 or neck-l. The
soliton spectrum for sufficiently largé is shown in Fig. 5.

ues.

10 T T T
0.8 i 0.60+ 1
2 I
z 0s0p % :
5 06 R : s S
2 ] S 040 : E
2 - S p :
204X ] S 0300 ! ' E
§ S ! ‘
g ¥ ; :
o2t ] = 020 : :
00l 0.10% E
2 0 2 4 6 8 10 0.00t , , ,
B 0 1 2 3 4
Q
FIG. 3. Maximal MI growth rateg40] vs B for k=1, y;,=
—0.5. Neck-I M, thin soild line; neck-Il MI, bold solid line; neck- FIG. 5. Ml growth rates v$) for k=1, 8=3, y;,=—0.5. The

Il MI, dotted line; snake-l MI, dashed line; snake-ll MI, dash- solid line corresponds to the neck-1 MI, the dotted line to the neck-
Il MI, and the dashed line to the snake-I M.

dotted line.
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FIG. 8. Competition between neck and snake instabilities.
Neck-l and snake-I instabilities have approximately equal growth
rates.k=1, B=0, y;,=—05. (a) |Eid atz=10, (b, |E;4
atz=15.

only unstable branches of the spectrum; see Sec. lll B. In the
cased,Q>0, an initially uniform stripe develops into a mul-
tihump structure with each hump forming a quasistable
spatio-temporal filament oscillating upon propagation. Such
a scenario is a typical one not only for the quadratic solitons
(see[24-28), but also for the solitons in media with a satu-
rable nonlinearity{20]. The problem of Ml of the longitudi-
nally unstable solitary stripe?,Q<0, looks more subtle.
However, the longitudinal instability{§ =0) appears to be
suppressed by the MI(,,,7#0), resulting in a dynamics
similar to the longitudinally stable ca$24—2§.

FIG. 6. Typical spatial profiles of the eigenvectors correspond- V. SUMMARY AND DISCUSSION
ing to the neck-1 Ml:y; ,=—0.5, k=1, =—1, 1=1.9. Dotted
lines mark corresponding profiles of the solitary wayes.Funda-
mental field;(b) second-harmonic field.

Asymptotic and numerical analyses revealing the very im-
portant role played by the internal and continuum eigen-
modes in the modulational instability of quadratic solitons in

Typical profiles of the most unstable eigenmodes corre:[he type- phase matching geometry have been performed. It

: - is demonstrated that the neck-type instability induced by the
spo_ndlng to neCk | MI are shown in Fig. 6 Weakly OIEf‘mpednormal GVD of both harmonics and dominating soliton dy-
oscillatory tails of these modes unambiguously verify the . : )

X d . X namics throughout the region of the negative wave-vector
link of this MI branch with the continuous spectrum. The o2 . . . . .

. . . . . mismatch originates from bifurcations involving the internal
results of the direct numerical simulation of Eq$) with . : . : :
T " ; . . and continuum modes. The snake instability causing soliton
initial conditions in the form of a soliton stripe perturbed

only by noise supporting the presented stability analysis ar?ending and studied previously in detail in R43,24 was
shown in Figs. 7-—9. Note that not only f@—0.5. but prac- ound to compete with the neck instability in the entire re-

. . . gion of the soliton existence.
tically throughout all the range of possible mismatches, sev Internal modes of one-dimensiondD) type- quadratic

eral Mi branches u_nderllne the soliton eV(_)I_utlon. E.g., thesolitons can be considered as one of their striking features
snake-I Ml is dominant for the large positive, but the

neck-type dynamics can be clearly seen in the second hac_ompare to 1D Kerr solitons. Although solitons in both t_hese
monic field: see Figs. 9a and 9(b) fodels have_ the same set of thg neutral m_odes, thg impor-
’ : ) tance of the internal modes manifests itself in the existence

of neck MI of the quadratic solitons in the media with nor-

mal GVD. Internal modes are particularly important when
Numerical investigation of EVR4) indicates that in this they are close the resonance with the neutral ones. Thus the
case MI branches predicted by the asymptotic analysis areart of the presented results dealing with the internal modes

B. Diffraction and anomalous GVD-induced MI: y; >0

%g (a;) ?g (b;) 2’% (a;) ?’% - (b;)
Wile oo ewwee 9 e ; B g, |
h g i i |

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

%g (a,) %g (by) %g (a,) %g (b,)

-
»2% Oo.o.--.no xglg *g% e Y
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

t t t t

FIG. 7. Competition between neck and snake instabilities. Snake FIG. 9. Competition between neck and snake instabilities.
instabilities are suppressed.k=1, B=-1, y;,=-0.5. Snake-| instability is a dominantk=1, B=5, y;,=—0.5.
(alyz) |El,2| atz= 10, (b_L,Z) |E112| atz=15. (alvz) |E1y2| atz= 10, (b_|_12) |El,2| atz= 12.
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can be compared with the competition of the neck and snake:\/(kw?), Qghz 202/ (kK" |w?), wherel p, and(},, are the
instabilities of thevector solitons in Kerr[29] and type-Il  growth rate and frequency in physical uniksjs the wave
quadratic[28] media, where this phenomenon and the assonumber of the fundamental fieldy is the characteristical
ciated higher degeneracy of the zero soliton eigenvalue origibeamwidth, andk” = ﬁik(w)zaik(zw) is the GVD param-
nate from an extra phase symmetry. Neck-type MI branchegter. Taking w~50 um, k~6x1fm™%, and K"
linked to the internal and continuum modes can also be-10-24 &2/m [16,42, one will obtain Nph=MN/(1.5 cm)
found in the type-Il case, but they are mostly suppressed by¥nd (,,=Q/(35 fs). Thus growing bands in the soliton
the MI due to the extra phase symme{2g]. spectrum should be observable after propagation throughout
The quadratic equation for eigenvalues of the spatiallfypical 2—3-cm-long samples. Fully developed neck MI in
symmetric eigenmodes similar to H3.0) have been derived media with normal GVD should result in the generation of a
not only in[28,29, but also in[18,21] in the context of the  train of the spatio-temporal solitons. E.g., the 90-ps pulses
2D NLS equation, where an extra degeneracy of the zer@sed in[16] should break up into around 1000 90-fs pulses
eigenvalue is linked with Talanov lens symmetry. Competi-after propagation of- 10 diffraction lengths. However, this
tion between the neck and snake instabilities is also possiblg more difficult to observe experimentally because it re-
in the latter example, but it has not been studied yet. Let m@ujres more than 10-cm-long samples. Note that the estima-
stress that the degeneracy due to symmetries does not dep&jih for the soliton temporal duration is consistent with re-
on the system parameters unlike the degeneracy due to th@nt experiments[33]. Well-pronounced pulse position
internal modes, which happens for some critical values of thescillations of the order of the soliton width due to domina-

parameters. Note that the disappearance of the snake MI gbn of snake MI should appear after propagation of the same
the type-l quadratic solitons for the negative wave-vectoljistance in media with normal GVD.

mismatch has been briefly mentioned[@8]. However, it Among the soliton Ml-related problems which are still
was left without any details there as well as in the subsequera;Ioen | would like to mention the importance of accounting
paper[24]. for the finite size of the pulsa in the case when the condi-

While the snake MI with spatially asymmetric eigen- tion AQ) . >1 is weakening. The first details of this issue
modes is atypical' solitonic phenomenon, analogs of the _necﬁa\,e been recently reported if26] in the context of
MI can be traced in Ml spectrum of the plane-wave solution,gjtfraction-induced MI. Obviously, the possibilities to have
as happens, e.g., for vector-Kerr solitg29]. In the present ditferent signs ofy; , and to vary|y;/v,| also open doors
context, the MI of the plane-wave solutiofE;  for the more extensive investigation. However, selective nu-
=\2x(2k+ B)e'?, E;=«e'??] has been studied if41-  merical checks have showed that the above-presented study
43]. The results of these papers have been reproduced pWaptures most of the qualitatively distinct features originating

ting 9=0 in Egs.(5). It has been found that clear counter- from bifurcations involving internal and continuum modes.
parts of the neck-1l and neck-lll branches exist, while an

important neck-1 branch appears to be a purely solitonic ef-
fect similarly to the snake instabilities.

The rescaled MI growth rate and frequency) can be The author acknowledges financial support from the
related to their real world values using the formubag, Royal Society of Edinburgh and British Petroleum.
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