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Role of internal and continuum modes in modulational instability of quadratic solitons

Dmitry V. Skryabin*
Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG, Scotland

~Received 2 June 1999!

The role of internal and continuum modes in the modulational instability of spatial quadratic solitons is
examined by asymptotic and numerical analyses. It is shown that these modes generate novel spatially sym-
metric and asymmetric modulation instability branches, which underline soliton dynamics throughout a wide
region of the wave-vector mismatch.@S1063-651X~99!07912-X#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

The evolution of optical solitary waves under the acti
of a perturbation of different physical origin is one of th
active areas of theoretical nonlinear optics. This problem
be tackled using soliton eigenmodes, which are solution
the associated linear eigenvalue problem. The eigenmo
can be either localized or delocalized with respect to
soliton itself. The former ones are the modes of the disc
spectrum and the latter ones are the modes of the continu
Stable discrete eigenmodes, orinternal modes@1#, being ex-
cited can propagate over very long distances@2#. Their exci-
tations can cause, e.g., periodic oscillations of the sol
width @3–5# or position@6,7#. Resonances of the two intern
modes with zero propagation constants always imply a s
ton bifurcation which can lead either to stationary instabil
@3,8–10# or to the appearance of another solitonic bran
@10,11#. The resonances of two pairs of the internal mod
with nonzero~equal in absolute values and opposite in sig!
propagation constants lead to a Hamiltonian-Hopf instabil
i.e., instability generated by a pair of complex-conjuga
propagation constants@9,12,13#. Internal and continuum
modes also cause certain nontrivial effects in the soliton
teraction; see, e.g.,@11,14#. As one can see from these e
amples both internal and continuum modes play a very
portant role practically in all aspects of the soliton dynami

Considering experimental schemes for an observation
the spatial self-trapping and soliton generation, high-inp
power levels are often required in materials with small no
linear susceptibilities and/or significant absorbtion. E.g., g
eration of Kerr and quadratic solitons in planar waveguid
requires powers of the order of 1 kW@15,16#. Such powers
can be practically easily achieved using pulses; therefore
effect of the group velocity dispersion~GVD! on the propa-
gation of the spatial solitons can become considerable, c
ing their break up into spatio-temporal clusters via devel
ment of the so-calledmodulational instability~MI !; see@17–
29# and @30–32#, respectively, for theoretical an
experimental results on the MI of solitons and solitonli
beams and pulses. The instabilities introduced in the pre
ing paragraph are usually calledinternal or longitudinal in-
stabilitiesand should be distinguished from MI which is th
subject of the present investigation.

*URL: http://cnqo.phys.strath.ac.uk/;dmitry
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GVD-induced MI of the spatial solitons is closely linke
with the concept of spatio-temporal solitons, which ha
been recently observed in an experiment with the bulk q
dratically nonlinear medium@33#. It has been shown theoret
cally that the fully developed MI of the spatial solitons r
sults in the generation of a train of the spatio-tempo
quasisolitons @19,20,27#. Growing sidebands in the fre
quency spectrum of the spatio-temporal pulse propagatin
the quadratic medium have also have been observed~see Fig.
3 in @33#!, indicating the presence of GVD-induced M
However, bulk media typically have relatively low GVD an
therefore large and controllable GVD coefficients in Bra
structures probably are more promising for the practical
lization of spatio-temporal solitons for all optical processi
of information; see, e.g.,@34# and references therein.

MI of the solitary waves is often routinely considered as
continuation of the neutrally stable modes of the solit
spectrum at zero modulational frequencyV, i.e., soliton
eigenmodes with zero propagation constants related to
tem symmetries, into the regionVÞ0. However, generally,
not only the neutral but also internal and continuum eig
modes can potentially produce MI branches. An analysis
this problem was largely avoided in the publications on
of the spatial solitons supported by the quadratic (x (2)) non-
linearity @22–28# and has also remained a practically u
touched issue in the more general solitonic context. It is
sharp contrast with the, already-described, detailed un
standing of the influence of the internal modes on the ‘‘
ternal’’ soliton dynamics. Here I will demonstrate the pre
ence of the novel MI branches in the quadratic solit
spectrum, which originate from either internal or continuu
modes and influence soliton dynamics throughout a w
physically realistic range of parameters.

II. MODEL EQUATIONS

The evolution of the slowly varying wave envelopes
the first (E1) and second (E2) harmonics propagating in th
diffractive and dispersivex (2) medium under the condition
of type-I phase matching can be described by the follow
set of the dimensionless equations@22–26#:

i ]zE11
1

2
]x

2E11g1]t
2E11E1* E250,
7511 © 1999 The American Physical Society
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i ]zE21
1

4
]x

2E21g2]t
2E21

1

2
E1

25bE2 . ~1!

Herex is the transverse coordinate measured in units of
characteristic beam width. Definitions of the other para
eters and independent variables depend from a partic
choice of the experimental scheme, where Eqs.~1! can be
applicable. First, Eqs. ~1! describe one-transverse
dimensional noncritically phase-matched experimen
schemes, where temporal walkoff can be neglected or c
pensated by some special techniques; see, e.g.,@33,35#. Then
z is the longitudinal coordinate measured in units of a s
able diffraction lengthl di f , t is the dimensionless retarde
time, andb is the wave-vector mismatch measured in un
l di f

21 , which is in the case of quasiphase matching has to
corrected by the grating constant@36#. ug1 /g2u is the relative
strength of the GVDs. If 2g154g251, then Eqs.~1! also
describe propagation in a bulk medium witht being the
second transverse coordinate. Second, considering the
generate three-wave mixing in a doubly periodic Bragg g
ing embedded in the quadratic medium He and Drumm
@37# and Conti with co-workers@38# have showed that fo
the frequencies close to the center of the forbidden
model equations governing propagation dynamics can be
duced to a form which formally coincides with Eqs.~1!. The
only difference is that temporal and longitudinal coordina
should be interchanged. The reason for this is that in
Bragg gratings the dominating dispersion originates from
delayed spatial, not temporal, response of the medium. M
details on renormalization of the dependent and indepen
variables and parameters can be found in@16,23–26,37,38#.

III. ASYMPTOTIC STABILITY ANALYSIS: THE ROLE
OF INTERNAL MODES

Equations~1! with ]t50 have a family of the ground
state solitary solutionsEm(x,z)5Am(x)eimkz (m51,2), if
k.max(0,2b/2). These solitons can be internally unstab
for b,0 providing that ]kQ,0 @8#, where Q5*dx(A1

2

12A2
2) is the soliton energy.

To study MI of the solitons we seek solutions of Eqs.~1!
in the form

Em5$Am~x!1@Um~x,z!1 iWm~x,z!#cosVt%eimkz, ~2!

whereV>0 is the modulation frequency,Um , Wm are small
perturbations, andm51,2. Separating the real and imagina
parts of the linearized problem and settingUm;um(x)elz,
Wm;wm(x)elz, we obtain two adjoint eigenvalue problem
~EVP!

2L̂0L̂1uW 5~l21V2ĝL̂11V2L̂0ĝ1V4ĝ2!uW , ~3!

2L̂1L̂0wW 5~l21V2ĝL̂01V2L̂1ĝ1V4ĝ2!wW , ~4!

defining the mode structure of the soliton induced line
waveguide. HerevW 5(u1 ,u2)T, wW 5(w1 ,w2)T,
e
-
lar
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L̂0,15S 2
1

2
]x

21k6A2 2A1

2A1 2
1

4
]x

212k1b
D , ~5!

ĝ5S g1 0

0 g2
D , ~6!

and l is an eigenvalue or, in other words, a propagat
constant of a soliton eigenmode.

Let suppose thatk1g1V2[j1>0 and 2k1b1g2V2

[j2>0. Then, generally,l2P(2`,2lg
2) is a continuous

part of the spectrum with unbounded eigenfunctions, wh
lg5min(j1,j2). Eigenvalues which do not belong to the co
tinuum constitute the discrete part of the spectrum and h
bounded eigenfunctions. Stable eigenmodes with eigen
ues obeying2lg

2,l2,0 are the internal modes. Any othe
mode of the discrete spectrum, i.e., any eigenmode withl2

complex or positive, renders the soliton unstable. Ifj1,0
and/orj2,0, the gap is closed,lg50. Phase, translationa
and Galilean symmetries and infinitesimal variations ofk
allow us to identify zero-eigenvalue~or neutral! eigenmodes
of the adjoint operatorsL̂1L̂0 and L̂0L̂1. These eigenmode
are wW f5(A1,2A2)T, wW v5x(A1,2A2)T, uW k5]k(A1 ,A2)T,
and uW x5]x(A1 ,A2)T and they obey following identities
L̂0wW f50, L̂0wW v52uW x , L̂1uW k52wW f , andL̂1uW x50.

Full information about the spectra of EVPs~3! and~4! can
be obtained only numerically, but for small absolute valu
of l application of an asymptotic approach leads to so
analytical predictions. Similarly to the previously studie
cases branches of the discrete spectrum produced by the
tially symmetric wW f , uW k and by the spatially asymmetri
vectorswW v , uW x can be considered independently. A symm
ric branch being unstable causes clustering of the solit
into the spatio-temporal patches~neck MI! and an unstable
asymmetric branch causes soliton bending~snake MI!.

To study discrete spectrum arising due to branching of
symmetric and asymmetric modes it is naturally to consi
EVP ~4! and ~3!, respectively. The internal modes are sym
metric ones@3# and therefore we focus on the EVP~4! be-
low. We seek its eigenmodes in the form

wW 5wW f1(
j 51

1`

wW j , ~7!

whereuwW j u;ulu2 j and ulu2;e!1. The key difference with
previous analyses@22–28# is that we assume hereV2;e2,
not ;e. It allows us to get a balanced equation forl2, which
takes into account the branching of the both neutral and
ternal modes.

Substituting Eq.~7! into Eq. ~4! one can obtain the fol-
lowing expression forwW :

wW 5wW f1l2L̂0
21uW k2l4L̂1

21L̂0
21uW k2V2ĝwW f1O~e3!.

~8!

Using the condition
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^~l21V2L̂1ĝ1V2ĝL̂01V4ĝ2!wW uuW k&50, ~9!

which holds for any solution of EVP~4!, one can get an
equation forl. Brackets^•••u•••& define an inner produc
in L2. Equation~9! has asymptotic character and has to
satisfied in each order ofe. The first-order condition require
l2]kQ;e2, implying that the internal instability threshol
]kQ50 should be close enough. The second-order condi
gives a quadratic equation forl2:

V2^ĝwW fuwW f&5l2S 1

2
]kQ1l2M D . ~10!

Here M5^L̂0
21uW kuuW k& is the soliton ‘‘mass,’’ which was

proved to be positive@8#.
If the longitudinal instability threshold is far, then]kQ

;e0 and one can assume thatulu2;V2;e. In this situation
the leading order forl2 is

l25
2V2^ĝwW fuwW f&

]kQ
, ~11!

which coincides with the previously derived expressio
@22,24–26,28#. If point ]kQ50 is close, then Eq.~11! has to
be used in its full form. This results in

l6
2 5

1

2M S 2
1

2
]kQ6A1

4
~]kQ!214MV2^ĝwW fuwW f& D .

~12!

At V50, Eqs.~12! give the doubly degenerate zero eige
value corresponding to the neutral modewW f and the eigen-
values 6A2]kQ/(2M ) corresponding to the interna
modes. It is clear that the rootl1

2 corresponds to the spectr
branch produced by the neutral modes and that the rootl2

2

corresponds to the branch produced by the stable (]kQ
.0), i.e., internal, or unstable (]kQ,0) modes which have
nonzero eigenvalues.

There are no spatially asymmetric internal modes a
therefore previously obtained analytical results concern
snake MI produced by the translational mode@22–24,28#
remain correct throughout an entire soliton existence reg
In our notations the corresponding expression forl2 is

l252V2 ^ĝuW xuuW x&
Q

. ~13!

A. Normal GVD-induced MI: g1,2<0

Equation~13! indicates that snake MI is always present
this case. Neck MI originating in the neighborhood ofV
50 is clearly impossible when]kQ;e0. However, if ]kQ
;e, then the low-frequency neck MI becomes possible
either sign of]kQ; see Eq.~12!.

If ]kQ.0, then the neck MI starts to grow from

Vc
25

~]kQ!2

16M u^ĝwW fuwW f&u
. ~14!
e

n

s

-

d
g

n.

r

This is because atV5Vc the square root in Eq.~12! be-
comes zero, indicating collision of the two eigenvaluesl1

2

and l2
2 , corresponding to the two pairs of the intern

modes. This collision gives onset to the Hamiltonian-Ho
instability with complex conjugated eigenvalues. If]kQ
,0, then a similar bifurcation happens at the sameVc , with
a soliton which was already internally unstable forV,Vc .

B. Diffraction and anomalous GVD-induced MI: g1,2>0

It follows from Eqs.~11! and ~12!, that if ]kQ.0, then
only the neutral modewW f gives onset to the neck MI and th
eigenvaluel2

2 corresponding to a pair of the internal mod
remains within the gap. The situation is reversed for]kQ

,0; i.e., the eigenvaluel1
2 corresponding towW f shifts in-

side the gap withV increasing andl2
2 produces a branch o

the neck MI. Snake MI generated by the translational mo
@see Eq.~13!# does not produce MI branches in this case.

IV. NUMERICAL STABILITY ANALYSIS : THE
ROLE OF CONTINUUM MODES

The MI spectrum in the region of largeV and, in particu-
lar, the study of the possible splitting of MI branches fro
the continuum can be most straightforwardly done using
merical methods. To address these problems, the EVP~4!
has been solved numerically using second-order finite dif
ences. A direct simulation of Eqs.~1! has also been per
formed to compare with the results of the linear approac

A. Normal GVD-induced MI: g1,2<0

Let us note from the very beginning that for differe
values ofb numerical results reveal the presence of as m
as three branches of neck-type and two branches of sn
type MI. We will gradually introduce all five branches, sta
ing our consideration from the parameter region where]kQ
;e and asymptotic expression~12! can be applied. First we
have numerically verified the appearance of the Hamiltoni
Hopf neck instability forV.Vc . The corresponding bifur-
cation diagram is shown in Fig. 1. The MI branch originati
from this bifurcation will be below called neck-I MI.

FIG. 1. Bifurcation diagram showing the collision of two ga
modes and the onset of the Hamiltonian-Hopf neck-I instabil
b521.8, k51, g1,2520.5.



ar

m

s
th
I

w
s
it

e
T
-
o

-
y
o

s,
nch
ke

on-
two

,
ap-
he
ral
nce
MI
li-
n-

nd
ta-
4

nd

I

he

-
al
ue
a

-
- ck-

7514 PRE 60DMITRY V. SKRYABIN
For normal GVD the gap in the continuous spectrum n
rows with increasing of V and it closes at Vg

2

5min„k/ug1u,(2k1b)/ug2u…. With a further increase ofV
the growth rate of the neck-I MI approaches its maximu
then decays, and finally disappears inside the continuum
someV.Vg ; see solid line in Fig. 2. Slightly before thi
point but after the closure of the gap another branch of
discrete spectrum with purely real eigenvalues, neck-II M
splits from the continuum. Though the neck-I branch sho
in Fig. 2 looks like it consists of two independent MI band
numerical results indicate that at these parameter values
a single branch. However, withb increasing, approximately
at b.21, it indeed splits into two independent branch
with the associated eigenvalues being complex numbers.
low-frequency band will be called neck-III MI and the high
frequency band inherits the name neck-I MI. The scenario
the appearance of neck-III MI changes with increasingb.
The internal soliton modes atV50 disappear inside the con
tinuum for b.0 @3#, and the neck-III branch splits directl
from the edge of the continuum when the eigenvalue ass
ated withwW f approaches this edge@39#. Considering the ap-

FIG. 2. MI growth rates vsV for k51, b521.8, g1,25
20.5. The thin solid line corresponds to the neck-I MI with com
plex eigenvalues, the bold solid line to the neck-II MI with re
eigenvalue, the dashed line to the snake-I MI with real eigenval
and the dash-dotted line to the snake-II MI with complex eigenv
ues.

FIG. 3. Maximal MI growth rates@40# vs b for k51, g1,25
20.5. Neck-I MI, thin soild line; neck-II MI, bold solid line; neck
III MI, dotted line; snake-I MI, dashed line; snake-II MI, dash
dotted line.
-
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pearance of neck-I MI, after the splitting into the two band
numerical results unambiguously reveal that now this bra
splits directly from the continuum. The first band of sna
MI, snake-I, is linked to the translational mode@see Eq.
~13!#, and the second band, snake-II, bifurcates from the c
tinuum having complex conjugated eigenvalues. These
bands are also shown in Fig. 2.

Close to the internal stability threshold]kQ50, the
maximal growth rates@40# of the secondary MI branches
neck-II and snake-II, occur at the frequencies which are
proximately twice the maximally unstable frequencies of t
primary instabilities, neck-I and snake-I, linked to the neut
and internal modes; see Fig. 2. This indicates the importa
of the second temporal harmonic in the development of
in the region]kQ;e where the second harmonic of the so
ton itself is dominant over or comparable with the fundame
tal field. Increasingb leads to the suppression of the seco
harmonic field and therefore the neck-II and snake-II ins
bilities quickly decay and finally disappear. Figure 3 and
illustrate, respectively, how the maximal growth rates a
maximally unstable modulation frequencyVmax of all five
MI branches depend onb. Thus one can see that snake-I M
dominates the soliton dynamics forb.0.5 and that forb
,0.5 the dominating instabilities are neck-I or neck-II. T
soliton spectrum for sufficiently largeb is shown in Fig. 5.

s,
l-

FIG. 4. Maximally unstable frequenciesVmax @40# vs b. Param-
eters and notation the same as in Fig. 3.

FIG. 5. MI growth rates vsV for k51, b53, g1,2520.5. The
solid line corresponds to the neck-I MI, the dotted line to the ne
III MI, and the dashed line to the snake-I MI.
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Typical profiles of the most unstable eigenmodes co
sponding to neck-I MI are shown in Fig. 6. Weakly damp
oscillatory tails of these modes unambiguously verify t
link of this MI branch with the continuous spectrum. Th
results of the direct numerical simulation of Eqs.~1! with
initial conditions in the form of a soliton stripe perturbe
only by noise supporting the presented stability analysis
shown in Figs. 7–9. Note that not only forb;0.5, but prac-
tically throughout all the range of possible mismatches, s
eral MI branches underline the soliton evolution. E.g.,
snake-I MI is dominant for the large positiveb, but the
neck-type dynamics can be clearly seen in the second
monic field; see Figs. 9(a2) and 9(b2).

B. Diffraction and anomalous GVD-induced MI: g1,2>0

Numerical investigation of EVP~4! indicates that in this
case MI branches predicted by the asymptotic analysis

FIG. 6. Typical spatial profiles of the eigenvectors correspo
ing to the neck-I MI:g1,2520.5, k51, b521, V51.9. Dotted
lines mark corresponding profiles of the solitary waves.~a! Funda-
mental field;~b! second-harmonic field.

FIG. 7. Competition between neck and snake instabilities. Sn
instabilities are suppressed.k51, b521, g1,2520.5.
(a1,2) uE1,2u at z510, (b1,2) uE1,2u at z515.
-

re

v-
e

r-

re

only unstable branches of the spectrum; see Sec. III B. In
case]kQ.0, an initially uniform stripe develops into a mu
tihump structure with each hump forming a quasista
spatio-temporal filament oscillating upon propagation. Su
a scenario is a typical one not only for the quadratic solito
~see@24–28#!, but also for the solitons in media with a sat
rable nonlinearity@20#. The problem of MI of the longitudi-
nally unstable solitary stripe,]kQ,0, looks more subtle.
However, the longitudinal instability (V50) appears to be
suppressed by the MI (VmaxÞ0), resulting in a dynamics
similar to the longitudinally stable case@24–28#.

V. SUMMARY AND DISCUSSION

Asymptotic and numerical analyses revealing the very
portant role played by the internal and continuum eige
modes in the modulational instability of quadratic solitons
the type-I phase matching geometry have been performe
is demonstrated that the neck-type instability induced by
normal GVD of both harmonics and dominating soliton d
namics throughout the region of the negative wave-vec
mismatch originates from bifurcations involving the intern
and continuum modes. The snake instability causing sol
bending and studied previously in detail in Refs.@23,24# was
found to compete with the neck instability in the entire r
gion of the soliton existence.

Internal modes of one-dimensional~1D! type-I quadratic
solitons can be considered as one of their striking featu
compare to 1D Kerr solitons. Although solitons in both the
models have the same set of the neutral modes, the im
tance of the internal modes manifests itself in the existe
of neck MI of the quadratic solitons in the media with no
mal GVD. Internal modes are particularly important wh
they are close the resonance with the neutral ones. Thus
part of the presented results dealing with the internal mo

-

e

FIG. 8. Competition between neck and snake instabiliti
Neck-I and snake-I instabilities have approximately equal grow
rates.k51, b50, g1,2520.5. (a1,2) uE1,2u at z510, (b1,2) uE1,2u
at z515.

FIG. 9. Competition between neck and snake instabiliti
Snake-I instability is a dominant.k51, b55, g1,2520.5.
(a1,2) uE1,2u at z510, (b1,2) uE1,2u at z512.
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can be compared with the competition of the neck and sn
instabilities of thevector solitons in Kerr@29# and type-II
quadratic@28# media, where this phenomenon and the as
ciated higher degeneracy of the zero soliton eigenvalue o
nate from an extra phase symmetry. Neck-type MI branc
linked to the internal and continuum modes can also
found in the type-II case, but they are mostly suppressed
the MI due to the extra phase symmetry@28#.

The quadratic equation for eigenvalues of the spatia
symmetric eigenmodes similar to Eq.~10! have been derived
not only in @28,29#, but also in@18,21# in the context of the
2D NLS equation, where an extra degeneracy of the z
eigenvalue is linked with Talanov lens symmetry. Compe
tion between the neck and snake instabilities is also poss
in the latter example, but it has not been studied yet. Let
stress that the degeneracy due to symmetries does not de
on the system parameters unlike the degeneracy due to
internal modes, which happens for some critical values of
parameters. Note that the disappearance of the snake M
the type-I quadratic solitons for the negative wave-vec
mismatch has been briefly mentioned in@23#. However, it
was left without any details there as well as in the subsequ
paper@24#.

While the snake MI with spatially asymmetric eige
modes is a typical solitonic phenomenon, analogs of the n
MI can be traced in MI spectrum of the plane-wave solutio
as happens, e.g., for vector-Kerr solitons@29#. In the present
context, the MI of the plane-wave solution@E1

5A2k(2k1b)eikz, E25kei2kz] has been studied in@41–
43#. The results of these papers have been reproduced
ting ]x

250 in Eqs.~5!. It has been found that clear counte
parts of the neck-II and neck-III branches exist, while
important neck-I branch appears to be a purely solitonic
fect similarly to the snake instabilities.

The rescaled MI growth ratel and frequencyV can be
related to their real world values using the formulaslph
rd

.S

v.

.J.

a

ke

-
i-
s
e
y

y

ro
-
le
e
end
the
e
of
r

nt

ck
,

ut-

f-

.l/(kw2), Vph
2 .2V2/(kuk9uw2), wherelph andVph are the

growth rate and frequency in physical units,k is the wave
number of the fundamental field,w is the characteristica
beamwidth, andk95]v

2 k(v).]v
2 k(2v) is the GVD param-

eter. Taking w;50 mm, k;63106m21, and k9
;10224 s2/m @16,42#, one will obtain lph.l/(1.5 cm)
and Vph.V/(35 fs). Thus growing bands in the solito
spectrum should be observable after propagation throug
typical 2–3-cm-long samples. Fully developed neck MI
media with normal GVD should result in the generation o
train of the spatio-temporal solitons. E.g., the 90-ps pul
used in@16# should break up into around 1000 90-fs puls
after propagation of;10 diffraction lengths. However, this
is more difficult to observe experimentally because it
quires more than 10-cm-long samples. Note that the esti
tion for the soliton temporal duration is consistent with r
cent experiments@33#. Well-pronounced pulse position
oscillations of the order of the soliton width due to domin
tion of snake MI should appear after propagation of the sa
distance in media with normal GVD.

Among the soliton MI-related problems which are st
open I would like to mention the importance of accounti
for the finite size of the pulseD in the case when the cond
tion DVmax@1 is weakening. The first details of this issu
have been recently reported in@26# in the context of
diffraction-induced MI. Obviously, the possibilities to hav
different signs ofg1,2 and to varyug1 /g2u also open doors
for the more extensive investigation. However, selective
merical checks have showed that the above-presented s
captures most of the qualitatively distinct features originat
from bifurcations involving internal and continuum modes
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